11 Math Cheat Sheet

Shreyas Minocha

Licensed under CC BY-SA 3.0.

Contents

I Sets and Functions 10
1 Sets 10
1.1 Representing sets 10
1.2 Special types of sets 10
1.3 Properties of sets 10
1.3.1 Cardinal number 10
1.3.2 Equality 10
1.3.3 Equivalence 10
1.3.4 Overlapment 11
1.3.5 Disjoincy 11
1.4 Subsets 11
1.5 Universal set 11
1.6 Operations on sets 11
1.6.1 Union of sets 11
1.6.2 Intersection of sets 12
1.6.3 Difference of sets 12
1.6.4 Symmetric difference 12
1.6.5 Complement of a set 13
1.7 Cardinal number of complex sets 13
2 Relations and Functions 13
II Trigonometry 14
3 Angles and Arc Lengths 14
4 Trigonometrical Functions 14
5 Compound and Multiple Angles 14
5.1 Sum 14
5.2 Difference 15
5.3 Product to Sum 15
5.4 Sum to Product 16
5.5 Double Angle 16
5.6 Half Angle 17
5.7 Triple Angle 17
5.8 One-third Angle 17
5.9 Miscellaneous 18
6 Trigonometric Equations 18
7 Properties of Triangle 18
7.1 Area of Triangle 18
7.2 Sine Rule 19
7.3 Cosine Rule 19
8 Mathematical Induction 19
III Algebra 20
9 Complex Numbers 20
9.1 Powers of i 20
9.2 Graphing complex numbers 21
9.3 Operations on complex numbers 21
9.4 Conjugate 21
9.5 Modulus 22
9.5.1 Properties 22
9.6 Polar form 23
9.7 Cube roots of unity 23
10 Quadratic Equations 24
10.1 Determining nature of roots 25
10.2 Quadratic formula 25
10.3 Determining the range of roots 26
10.4 Equations reducible to quadratic equations 26
10.4.1 $a x^{2 n}+b x^{n}+c=0$ 26
10.4.2 $a z+\frac{b}{z}+c=0$ 26
10.4.3 $(x+a)(x+b)(x+c)(x+d)+k=0$ 26
10.5 Sums and products of roots 26
11 Inequalities 27
12 Permutations and Combinations 27
13 Binomial Theorem 28
13.1 Properties of Binomial Expansions 28
14 Sequence and Series 29
14.1 Arithmetic Progressions 29
14.2 Geometric Progressions 29
14.3 Arithmetico-geometric Series 30
14.4 Series involving natural numbers 30
IV Coordinate Geometry 32
15 Basic Concepts of Points and their Coordinates 32
16 The Straight Line 33
16.1 Standard Form 33
16.2 Slope-Intercept Form 33
16.3 Angle Between Two lines 33
16.4 Intercept form 33
16.5 Normal Form 33
16.6 Perpendicular distance between a line and a point 34
16.7 Angular Bisector 34
16.8 Lines parallel to a line 34
16.9 Lines perpendicular to a line 34
17 Circle 34
17.1 Intercept on the axes 35
17.2 Intersection of a line and a circle 35
17.3 Equation of a tangent 35
17.3.1 At a point on the circle 35
17.3.2 With a given slope m 36
17.3.3 Through an external point $\left(x_{1}, y_{1}\right)$ 36
17.3.4 Of $x^{2}+y^{2}=a^{2}$ in terms of the tangent's slope 36
V Calculus 37
18 Limits 37
18.1 Indeterminate forms 38
18.2 Algebraic limits 38
18.2.1 Direct substitution 38
18.2.2 Factorization 39
18.2.3 Rationalization 39
18.2.4 Using expansions 39
18.2.5 $\lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=n a^{n-1}$ where $a>0$ 39
18.2.6 $\lim _{x \rightarrow a}\left(\frac{x^{m}-a^{m}}{x^{n}-a^{n}}\right)=\frac{m}{n} a^{m-n}$ where $a>0$ 39
18.3 Infinite limits 39
18.3.1 Divide fraction by highest power of x 39
18.3.2 Set $x=\frac{1}{y}$. As $x \rightarrow \infty, y \rightarrow 0$ 39
18.4 Trigonometric limits 39
18.4.1 When $x \rightarrow a(a \neq 0)$ 40
18.4.2 Factorization 40
18.5 Exponential and logarithmic limits 40
18.6 L'Hôpital's rule 40
19 Differentiation 41
19.1 Rules 41
19.2 Some Important Derivatives 42
VI Measures of Dispersion 43
20 Measures of Central Tendency 43
20.1 Basic 43
20.2 Direct method 43
20.3 Short-cut method 43
20.4 Step deviation method 43
21 Measures of Dispersion 43
22 Probability 44
VII Conic Section 45
23 Parabola 45
24 Ellipse 45
25 Hyperbola 45
VIII Introduction to 3-Dimensional Geometry 46
26 Points and their Coordinates in 3-Dimensions 46
27 Mathematical Reasoning 46
IX Statistics 47
28 Statistics(Continued) 47
29 Correlation Analysis 48
29.1 Covariance 48
29.2 Karl Pearson's Coefficient of Correlation 48
29.3 Spearman's Rank Correlation Coefficient 49
30 Index Numbers 49
30.1 Unweighted 49
30.2 Weighted 49
31 Moving Average 49
X Non-ISC chapters 50
32 Logarithms 50
32.1 Laws 50

Part I

Sets and Functions

1 Sets

A well-defined collection of objects.

1.1 Representing sets

- In words
- Roster/tabulation method
- Rule method

1.2 Special types of sets

- Empty/null set \emptyset
- Singleton (has a single element)

1.3 Properties of sets

1.3.1 Cardinal number

Number of elements in a finite set. The number of elements in a set A is denoted by $n(A)$.

1.3.2 Equality

Exactly the same elements

1.3.3 Equivalence

Same number of elements

1.3.4 Overlapment

Having at least one element common

1.3.5 Disjoincy

Having no elements in common

1.4 Subsets

If A and B are sets such that every member of set A is a member of set \mathbf{B}, A is called a subset of $B(A \subseteq B)$.

1. B is a subset of $B(B \subseteq B)$.

2 . \emptyset is a subset of all sets
3. For any two sets A and B, if $A \subseteq B$ and $B \subseteq A$, then $A=B$.

If A and B are sets such that every member of set A is a member of set B, but set A is not equal to set B, A is called a proper subset of $B(A \subset B)$. B is not a subset of B.

A set of sets is called a family of sets.
The set of all subsets of a set is called a power set. The power set of a set A is denoted as $P(A)$. A set having n elements has 2^{n} subsets.

1.5 Universal set

The set of all possible elements in a certain context is called the universal set and is denoted by ξ or U or E.

1.6 Operations on sets

1.6.1 Union of sets

$$
A \cup B=\{x \mid(x \in A| | x \in B)\}
$$

1. $A \cup B=B \cup A$
2. $(A \cup B) \cup C=A \cup(B \cup C)$
3. $A \subseteq A \cup B$ and $B \subseteq A \cup B$
4. If $A \subseteq B, A \cup B=B$
5. $A \cup \emptyset=A$

1.6.2 Intersection of sets

$$
A \cap B=\{x \mid(x \in A \& \& x \in B)\}
$$

1. $A \cap B=B \cap A$
2. $(A \cap B) \cap C=A \cap(B \cap C)$
3. If $A \subseteq B, A \cap B=A$
4. $A \cap \emptyset=\emptyset$

1.6.3 Difference of sets

If A and B are sets, $A-B$ is the set of elements in A and not in B and $B-A$ is the set of elements in B and not in A.

1.6.4 Symmetric difference

$$
\begin{aligned}
& A \Delta B=(A-B) \cup(B-A) \\
& A \Delta B=(A \cup B)-(B \cap A)
\end{aligned}
$$

$$
A \Delta B=B \Delta A
$$

$$
A \Delta A=\emptyset
$$

1.6.5 Complement of a set

The complement of a set A is the set of all elements which do not belong to A. It is denoted as A^{\prime} or \bar{A} or A^{e}.

1. $\left(A^{\prime}\right)^{\prime}=A$
2. $\xi^{\prime}=\emptyset$ and $\emptyset^{\prime}=\xi$
3. $A \cup A^{\prime}=\xi$ and $A \cap A^{\prime}=\emptyset$
4. $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ or $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

1.7 Cardinal number of complex sets

$$
\begin{gathered}
n(A \cup B)=n(A)+n(B)-n(A \cap B) \\
n(A \cup B \cup C)=n(a)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(C \cap A)+n(A \cap B \cap C)
\end{gathered}
$$

2 Relations and Functions

Part II

Trigonometry

3 Angles and Arc Lengths

$$
\begin{gathered}
(2 \pi)^{r}=360^{\circ} \\
\theta=\frac{s}{r}
\end{gathered}
$$

where θ is in radians, s is the length of the arc subtended by θ and r is the radius of the circle.

$$
A=\frac{r^{2} \theta}{2}=\frac{r s}{2}
$$

where A is the area of a sector with angle θ.

4 Trigonometrical Functions

The following table can be derived by visualizing the unit circle for each of these angles.

	$-\theta$	$90^{\circ}-\theta$	$90^{\circ}+\theta$	$180^{\circ}-\theta$	$180^{\circ}+\theta$	$360^{\circ}-\theta$	$360^{\circ}+\theta$
\sin	$-\sin \theta$	$\cos \theta$	$\cos \theta$	$\sin \theta$	$-\sin \theta$	$-\sin \theta$	$\sin \theta$
\cos	$\cos \theta$	$\sin \theta$	$-\sin \theta$	$-\cos \theta$	$-\cos \theta$	$\cos \theta$	$\cos \theta$
\tan	$-\tan \theta$	$\cot \theta$	$-\cot \theta$	$\tan \theta$	$\tan \theta$	$\tan \theta$	$\tan \theta$

5 Compound and Multiple Angles

5.1 Sum

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B
$$

$$
\begin{gathered}
\cos (A+B)=\cos A \cos B-\sin A \sin B \\
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\cot (A+B)=\frac{\cot A \cot B-1}{\cot A+\cot B} \\
\tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan A \tan C}
\end{gathered}
$$

5.2 Difference

$$
\begin{gathered}
\sin (A-B)=\sin A \cos B-\cos A \sin B \\
\cos (A-B)=\cos A \cos B+\sin A \sin B \\
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \\
\cot (A-B)=\frac{\cot A \cot B+1}{\cot A-\cot B}
\end{gathered}
$$

5.3 Product to Sum

$$
\begin{aligned}
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B) \\
& 2 \cos A \cos B=\cos (A-B)+\cos (A+B)
\end{aligned}
$$

$$
2 \sin A \cos B=\sin (A+B)+\sin (A-B)
$$

$$
2 \cos A \sin B=\sin (A+B)-\sin (A-B)
$$

5.4 Sum to Product

$$
\begin{aligned}
& \sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2} \\
& \sin C-\sin D=2 \cos \frac{C+D}{2} \sin \frac{C-D}{2} \\
& \cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2} \\
& \cos C-\cos D=2 \sin \frac{C+D}{2} \sin \frac{D-C}{2}
\end{aligned}
$$

5.5 Double Angle

$$
\begin{gathered}
\sin 2 A=2 \sin A \cos A=\frac{2 \tan A}{1+\tan ^{2} A} \\
\cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A=\frac{1-\tan ^{2} A}{1+\tan ^{2} A} \\
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} \\
2 \sin ^{2} A=1-\cos 2 A \\
\tan ^{2} A=\frac{1-\cos 2 A}{1+\cos 2 A} \\
2 \cos ^{2} A=1+\cos 2 A
\end{gathered}
$$

5.6 Half Angle

$$
\begin{gathered}
\sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}=\frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}} \\
\cos A=\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}=2 \cos ^{2} \frac{A}{2}-1=1-2 \sin ^{2} \frac{A}{2}=\frac{1-\tan ^{2} \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}} \\
\tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}} \\
\sin \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{2}} \\
\cos \frac{A}{2}= \pm \sqrt{\frac{1+\cos A}{2}} \\
\tan \frac{A}{2}= \pm \sqrt{\frac{1-\cos A}{1+\cos A}}
\end{gathered}
$$

5.7 Triple Angle

$$
\begin{aligned}
& \sin 3 A=3 \sin A-4 \sin ^{3} A \\
& \cos 3 A=4 \cos ^{3} A-3 \cos A \\
& \tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}
\end{aligned}
$$

5.8 One-third Angle

$$
\begin{aligned}
& \sin A=3 \sin \frac{A}{3}-4 \sin ^{3} \frac{A}{3} \\
& \cos A=4 \cos ^{3} \frac{A}{3}-3 \cos \frac{A}{3}
\end{aligned}
$$

$$
\tan A=\frac{3 \tan \frac{A}{3}-\tan ^{3} \frac{A}{3}}{1-3 \tan ^{2} \frac{A}{3}}
$$

5.9 Miscellaneous

$$
\begin{aligned}
& \sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B \\
& \cos (A+B) \cos (A-B)=\cos ^{2} A-\sin ^{2} B
\end{aligned}
$$

6 Trigonometric Equations

Equation	General solution
$\sin \theta=0$	$\theta=n \pi$
$\cos \theta=0$	$\theta=(2 n+1) \pi$
$\tan \theta=0$	$\theta=n \pi$
$\cot \theta=0$	$\theta=(2 n+1) \pi$
$\sec \theta=0$	-
$\csc \theta=0$	-
$\sin \theta=\sin \alpha$	$\theta=n \pi+(-1)^{n} \alpha$
$\cos \theta=\cos \alpha$	$\theta=2 n \pi \pm \alpha$
$\tan \theta=\tan ^{2} \alpha$	$\theta=n \pi \pm \alpha$
$\sin ^{2} \theta=\sin ^{2} \alpha$	$\theta=n \pi \pm \alpha$
$\cos ^{2} \theta=\cos ^{2} \alpha$	$\theta=n \pi \pm \alpha$
$\tan ^{2} \theta=\tan ^{2} \alpha$	$\theta=n \pi \pm \alpha$

7 Properties of Triangle

7.1 Area of Triangle

$$
\Delta=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} c a \sin B
$$

7.2 Sine Rule

$$
\frac{\sin A}{A}=\frac{\sin B}{B}=\frac{\sin B}{B}
$$

7.3 Cosine Rule

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=c^{2}+a^{2}-2 c a \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

8 Mathematical Induction

A statement $T(n)$ is true for all $n \in \mathbb{N}$, provided $T(1)$ is true and $T(k) \Rightarrow$ $T(k+1)$.

Steps to be followed:

1. Basic step: Show $T(1)$ is true.
2. Assume that $T(k)$ is true.
3. Induction step: Prove that that implies that $T(k+1)$ is true.

Part III

Algebra

9 Complex Numbers

The basis of imaginary numbers is the imaginary unit, i, or iota such that

$$
\begin{gathered}
i^{2}=-1 \\
\Rightarrow i=\sqrt{-1}
\end{gathered}
$$

Complex numbers are numbers of the form $a+b i$ where a and b are real numbers. a is the real part of the complex number and is denoted as $\operatorname{Re}(a+b i) . b i$ is the imaginary part of the complex number and is denoted as $\operatorname{Im}(a+b i)$.

9.1 Powers of i

The value of whole number powers of i can be found easily as there is a simple pattern to them.

$$
\begin{gathered}
i^{1}=i \\
i^{2}=-1 \\
i^{3}=i^{2} \cdot i=-i \\
i^{4}=i^{2} \cdot i^{2}=1
\end{gathered}
$$

Subsequent powers just cycle over these same values. In an attempt to generalize i^{n}, where n is a whole number, we get $i^{n}=\left(i^{4}\right)^{k} \cdot i^{n-4 k}=i^{n-4 k}$. What we want, is the remainder when n is divided by 4 , that is, $n \bmod 4$. Therefore,

$$
i^{n}=i^{n} \quad \bmod 4
$$

9.2 Graphing complex numbers

Complex numbers are graphed in the complex plane or the argand plane. The plane has two axes, a horizontal axis, the real axis, and a vertical axis, the imaginary axis.

9.3 Operations on complex numbers

For two complex numbers $z_{1}=a+b i$ and $z_{2}=c+d i$,

$$
\begin{gathered}
z_{1}+z_{2}=(a+c)+(b+d) i \\
-z_{1}=-a+(-b) i \\
z_{1}-z_{2}=(a-c)+(b-d) i \\
z_{1} \times z_{2}=(a c-b d)+(a d+b c) i
\end{gathered}
$$

9.4 Conjugate

The conjugate of an complex number $z=a+b i$ is another complex number $\bar{z}=a-b i$. If z is graphed in the complex plane, \bar{z} is the reflection of z in the x -axis.

9.5 Modulus

If a complex number z is denoted in the complex plane, its modulus, $|z|$ is the distance of z from the origin of the complex plane. If $z=a+b i$,

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

9.5.1 Properties

$$
\begin{gathered}
z=0 \Longleftrightarrow|z|=0 \\
z \bar{z}=|z|^{2} \\
|z|=|\bar{z}| \\
-|z| \leq \operatorname{Re}(z) \leq|z| \\
-|z| \leq \operatorname{Im}(z) \leq|z| \\
z^{-1}=\frac{\bar{z}}{|z|^{2}} \\
\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right| \\
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
\end{gathered}
$$

9.6 Polar form

For a complex number $z=a+b i$,

$$
a=r \cos \theta
$$

$$
b=r \sin \theta
$$

Thus, $z=r \cos \theta+(r \sin \theta) i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$. This is the polar form of z.

$$
\begin{gathered}
\tan \theta=\frac{b}{a} \\
\theta=\tan ^{-1} \frac{b}{a} \\
r=\sqrt{a^{2}+b^{2}}=|z|
\end{gathered}
$$

The angle θ is also called the argument or amplitude of $z=a+b i$, denoted as $\theta=\arg z=\operatorname{am} z$.

$$
\begin{aligned}
& \operatorname{am}\left(z_{1} z_{2}\right)=\operatorname{am} z_{1}+\operatorname{am} z_{2} \\
& \operatorname{am}\left(\frac{z_{1}}{z_{2}}\right)=\operatorname{am} z_{1}-\operatorname{am} z_{2}
\end{aligned}
$$

9.7 Cube roots of unity

$$
\sqrt[3]{1}=1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}
$$

If one of the complex cube roots is denoted as ω, the other is ω^{2}.

$$
\begin{gathered}
\omega=\frac{-1 \pm i \sqrt{3}}{2} \\
\sqrt[3]{1}=1, \omega, \omega^{2} \\
1+\omega+\omega^{2}=0 \\
\omega^{3}=1
\end{gathered}
$$

10 Quadratic Equations

A quadratic equation is a polynomial with degree 2 . In the cartesian plane, the graph of a quadratic equation is a parabola. Forms of a quadratic equation:

- Standard form
- Intercept form
- Vertex form

If $f(x)$ is a quadratic function, the roots of the equation are values k such that $f(k)=0$. Quadratic equations have zero, one, or two real roots. The following terms are synonyms of roots:

- solutions
- zeroes(because $f($ root $)=0)$
- x-intercepts(because the roots are the x -intercepts of the graph)

The standard form is $a x^{2}+b x+c=0$ where a, b and c are constants. The standard form is the least useful of them all. When a is positive, the graph of the equation is upward opening. When it is negative, the graph is downward opening. The axis of symmetry of the parabola is the line $x=\frac{-b}{2 a}$.

The intercept form is $a(x-\alpha)(x-\beta)=0$ where a is a constant and α and β are the roots of the equation. This form clearly shows the roots of the equation.

The vertex form is $a(x-h)^{2}+k=0$ where (h, k) is the vertex of the graph of the equation. This form is useful for determining maximum/minimum value of the function. The direction of the parabola can be determined from the sign of a like it is determined for the standard form. The axis of symmetry of the parabola is the line $x=h$.

10.1 Determining nature of roots

The nature of the roots of a quadratic equation can be determined without solving for the roots. For a quadratic equation in the standard form, the discriminant, Δ, is given as $\Delta=b^{2}-4 a c$ where a, b and c have there usual meanings. The nature of the roots $x_{!}$and x_{2} is given as

$$
x_{1}, x_{2} \begin{cases}x_{1}, x_{2} \in \mathbb{Q} & \Delta>0, \sqrt{\Delta} \in \mathbb{Z} \\ x_{1}, x_{2} \in \mathbb{R} & \Delta>0, \sqrt{\Delta} \notin \mathbb{Z} \\ x_{1}=x_{2} & \Delta=0 \\ x_{1}, x_{2} \in \mathbb{C}, x_{1}, x_{2} \notin \mathbb{R} & \Delta<0\end{cases}
$$

10.2 Quadratic formula

The roots of a quadratic equation in the standard form can be determined using the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Where a, b and c have there usual meanings.

10.3 Determining the range of roots

10.4 Equations reducible to quadratic equations

10.4.1 $a x^{2 n}+b x^{n}+c=0$

Let $y=x^{2 n}$ and solve as a quadratic.
10.4.2 $a z+\frac{b}{z}+c=0$

Multiply the whole equation by z and solve as a quadratic.
10.4.3 $(x+a)(x+b)(x+c)(x+d)+k=0$

When the sum of two of a, b, c, d is equal to the sum of the other two, the equation can be reduced to a quadratic.

Say $a+d=b+c=m$.
$[(x+a)(x+d)][(x+b)(x+c)]+k=0$
$\left[x^{2}+m x+a d\right]\left[x^{2}+m x+b c\right]+k=0$.
Let $x^{2}+m x$ be y.
Now solve $(y+a d)(y+b c)+k=0$ as a quadratic.

10.5 Sums and products of roots

For a given quadratic equation $a x^{2}+b x+c=0$ with roots α and β,

$$
\begin{gathered}
\alpha+\beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=-\frac{2 b}{2 a}=-\frac{b}{a} \\
\alpha \beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \times \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}=\frac{b^{2}-\left(b^{2}-4 a c\right)}{4 a^{2}}=\frac{4 a c}{4 a^{2}}=\frac{c}{a}
\end{gathered}
$$

11 Inequalities

12 Permutations and Combinations

The number of ways to choose and arrange r out of n items is given as:

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

Number of ways to arrange n items where p_{0} are of one kind, p_{1} are of another kind etc is given as:

$$
\frac{n!}{\Pi p_{i}}
$$

Number of circular arrangements of n different things:

$$
(n-1)!
$$

Number of circular arrangements of n different things where clockwise and counter-clockwise count as the same:

$$
\frac{1}{2}(n-1)!
$$

Number of circular arrangements of n different things taken r at a time:

$$
\frac{P(n, r)}{r}
$$

Number of circular arrangements of n different things taken r at a time where clockwise and counter-clockwise count as the same:

$$
\frac{1}{2} \times \frac{P(n, r)}{r}
$$

Number of ways to choose r out of n items:

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

Number of diagonals in a polygon:

$$
\begin{gathered}
C(n, 2)-n \\
C(n, r)+C(n, r-1)=C(n+1, r)
\end{gathered}
$$

where $1 \leq r \leq n$.

13 Binomial Theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Similarly,

$$
(a-b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k}(-b)^{k}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a^{n-k} b^{k}
$$

The k th term term in the expansion of $(a+b)^{n}, T_{k}$ is given as

$$
T_{k}=\binom{n}{k-1} a^{n-k+1} b^{r-1}
$$

13.1 Properties of Binomial Expansions

For the binomial expansion of $(a+b)^{n}$,

- The number of terms is $n+1$.
- The sum of the indices of a and b in each term is n.
- The sum of binomial coefficients is 2^{n}.

14 Sequence and Series

14.1 Arithmetic Progressions

Arithmetic progressions(APs) are progressions where each term differs from the previous one by a constant value. This constant value is called the common difference.

The nth term of an AP is given as

$$
T_{n}=a+d(n-1)
$$

where a is the first term of the sequence and d is the common difference.
The sum of the first n terms of an AP is given as

$$
S_{n}=\frac{n}{2}(a+l)=\frac{n}{2}(2 a+d(n-1))
$$

where l is the last term of the sequence and a and d have their usual meanings.

14.2 Geometric Progressions

Geometric progressions(GPs) are sequences where each term can be found by multiplying the preceding term by a constant value which is neither zero, nor one. The constant value is called the common ratio.

The nth term of a GP is given as

$$
T_{n}=a r^{n-1}
$$

where a is the first term of the GP and r is the common ratio.
The sum of the first n terms of a GP is given as

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a-l r}{1-r}
$$

where all symbols hold their usual meanings. Some publishers give the sum as

$$
S_{n}= \begin{cases}\frac{a\left(1-r^{n}\right)}{1-r}=\frac{a-l r}{1-r} & r<1 \\ \frac{a\left(r^{n}-1\right)}{r-1}=\frac{l r-a}{r-1} & r>1\end{cases}
$$

However, all the above expressions are equivalent.
The sum of the terms of an infinite GP exists only when $|r|<1$. It is given as

$$
S_{\infty}=\frac{a}{1-r}
$$

14.3 Arithmetico-geometric Series

A series each term of which is found by multiplying the corresponding terms of an AP and a GP is called an arithmetico-geometric(AG) series. S_{n} is the sum of the first n terms of an AG series while S_{∞} is the sum of the AG series to infinity.

$$
S_{n}=\frac{a}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{(a+d(n-1)) r^{n}}{1-r}
$$

where a is the first term of the AP, d is the common difference of the AP and r is the common ratio of the GP. The above result is valid only when the GP is of the form $1, r, r^{2} \ldots$

$$
S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}
$$

where a, d and r hold the same meanings as above.

14.4 Series involving natural numbers

Expressions for the sum of powers of the first n natural numbers can be derived.
Sum of first n natural numbers is given as

$$
\sum n=\frac{n(n+1)}{2}
$$

Sum of the squares of the first n natural numbers is given as

$$
\sum n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Sum of the cubes of the first n natural numbers is given as

$$
\sum n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}=\left(\sum n\right)^{2}
$$

Part IV

Coordinate Geometry

15 Basic Concepts of Points and their Coordinates

The distance d between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given as:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The coordinates of the point that divides the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally in the ratio $m: n$ are:

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)
$$

The coordinates of the point that divides the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ externally in the ratio $m: n$ are:

$$
\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right)
$$

The coordinates of the centroid of a triangle with coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, $\left(x_{3}, y_{3}\right)$ is given as:

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

The area Δ of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ is given as:

$$
\Delta= \pm \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right.
$$

16 The Straight Line

16.1 Standard Form

$$
a x+b y+c=0
$$

16.2 Slope-Intercept Form

$$
y=m x+c
$$

where m is the slope of the line and c is the y-intercept of the line.

16.3 Angle Between Two lines

$$
\tan \theta=\left|\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1} \tan \theta_{2}}\right|=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

where θ_{1} and θ_{2} are the angles the lines make with the positive end of the x-axis and m_{1} and m_{2} are the slopes.

16.4 Intercept form

$$
\frac{x}{a}+\frac{y}{b}=1
$$

where a is the x-intercept and b is the y-intercept.

16.5 Normal Form

$$
x \cos \alpha+y \sin \alpha=p
$$

where α is the angle the line makes with the positive end of the x-axis and p is the perpendicular distance of the line from the origin.

16.6 Perpendicular distance between a line and a point

The perpendicular distance between $a x+b y+c=0$ and $\left(x_{1}, y_{1}\right)$ is given as

$$
\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

16.7 Angular Bisector

The equation of the angle bisectors of $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is

$$
\frac{a_{1} x+b_{1} y+c}{\sqrt{a_{1}^{2}+b_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c}{\sqrt{a_{2}^{2}+b_{2}^{2}}}
$$

16.8 Lines parallel to a line

The equation of the lines parallel to $a x+b y+c=0$ is given as

$$
a x+b y+k=0
$$

16.9 Lines perpendicular to a line

The equation of the lines perpendicular to $a x+b y+c=0$ is given as

$$
-b x+a y+k=0
$$

17 Circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Centre: (h, k), radius: r

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \Rightarrow x^{2}+y^{2}-2 h x-2 k x+h^{2}+k^{2}-r^{2}=0 \\
x^{2}+y^{2}+2 g x+2 f y+c=0
\end{gathered}
$$

where $g=-k, f=-k$ and $c=h^{2}+k^{2}-r^{2}$. Centre: $(-g,-f)$, radius: $\sqrt{g^{2}+f^{2}-c}$

If the ends of the diameter of a circle are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the equation of the circle is given as

$$
\left(\frac{y-y_{1}}{x-x_{1}}\right)\left(\frac{y-y_{2}}{x-x_{2}}\right)=-1
$$

17.1 Intercept on the axes

The x and y intercepts can be found by plugging in $y=0$ and $x=0$ respectively and solving the resulting quadratics.

17.2 Intersection of a line and a circle

1. Plug in the value of x or y from the equation of the line into the equation of the circle
2. Solve the resulting quadratic for the two values of the variable
3. Plug in the resulting values into the equation of the line and solve to get the values of the other variable

The pairs of x and y co-ordinates are the points of intersection of the line and the circle.

17.3 Equation of a tangent

17.3.1 At a point on the circle

1. Find the slope of the radius through the point of contact
2. Slope of the tangent is its negative reciprocal
3. Use $y-y_{1}=m\left(x-x_{1}\right)$

17.3.2 With a given slope m

1. Slope of the radius perpendicular to the tangent is the negative reciprocal of m
2. Let the equation of the tangent be $y=m x+b$
3. Find the perpendicular distance between the equation of the tangent and the centre, set it equal to the circle's radius and solve

17.3.3 Through an external point $\left(x_{1}, y_{1}\right)$

1. Let the equation of the tangent be $y-y_{1}=m\left(x-x_{1}\right)$
2. Find the perpendicular distance between the equation of the tangent and the centre, set it equal to the circle's radius and solve
17.3.4 Of $x^{2}+y^{2}=a^{2}$ in terms of the tangent's slope

$$
y=m x \pm 4 \sqrt{1+m^{2}}
$$

where m is the slope of the tangent

Part V

Calculus

18 Limits

Given a number $\delta>0$ howsoever small, if x takes up values such that $0<$ $|x-a|<\delta$ then x is said to tend to a and is symbolically written $x \rightarrow a$.

A function $f(x)$ is said to tend to a limit l when x tends to a if the difference between $f(x)$ and l and can be made as small as we please by making x sufficiently close to a.

$$
\lim _{x \rightarrow a} f(x)=l
$$

If for every positive number ϵ, however small it may be, there exists a positive number δ such that whenever $0<|x-a|<\delta$ we have $|f(x)-1|<\epsilon$ then we say $f(x)$ tends to the limit l as ' x tends to a '.

A function will have a limit iff the limit as x approaches a from the right side is equal to the limit as x approaches a from the left side, that is, iff the right limit is equal to the left limit.

Theorems

$$
\begin{gathered}
\lim _{x \rightarrow a}(f+g) x=\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a}(f-g) x=\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a}(f g) x=\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x) \\
\lim _{x \rightarrow a}(f \div g) x=\lim _{x \rightarrow a}[f(x) \div g(x)]=\lim _{x \rightarrow a} f(x) \div \lim _{x \rightarrow a} g(x)
\end{gathered}
$$

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow 0}\right]^{n}
$$

where n is a positive integer
If $\lim _{x \rightarrow a} f(x)=+\infty$ or $-\infty, \lim _{x \rightarrow a} \frac{1}{f(x)}=0$

$$
\begin{gathered}
\lim _{x \rightarrow a} \log f(x)=\log \left(\lim _{x \rightarrow a} f(x)\right) \\
\lim _{x \rightarrow a} f \circ g(x)=f\left(\lim _{x \rightarrow a} g(x)\right)
\end{gathered}
$$

18.1 Indeterminate forms

- $\frac{0}{0}$
- $\frac{\infty}{\infty}$
- $0 \times \infty$
- $\infty-\infty$
- 1^{∞}
- ∞^{0}
- ...

18.2 Algebraic limits

Often declaring $x=a+h$ is useful because then when $x \rightarrow a, h \rightarrow 0$.

18.2.1 Direct substitution

If on directly substituting a value in the given expression the result is finite, that finite number is the limit of the given expression.

18.2.2 Factorization

18.2.3 Rationalization

In functions that involve roots, rationalization of the numerator or denominator can help

18.2.4 Using expansions

- Binomial expansion
- Stuff cancels out
* \o/
18.2.5 $\lim _{x \rightarrow a}\left(\frac{x^{n}-a^{n}}{x-a}\right)=n a^{n-1}$ where $a>0$
18.2.6 $\lim _{x \rightarrow a}\left(\frac{x^{m}-a^{m}}{x^{n}-a^{n}}\right)=\frac{m}{n} a^{m-n}$ where $a>0$

18.3 Infinite limits

18.3.1 Divide fraction by highest power of x
$\frac{1}{x}, \frac{1}{x^{2}}, \ldots \rightarrow 0$ as $x \rightarrow \infty$

18.3.2 \quad Set $x=\frac{1}{y}$. As $x \rightarrow \infty, y \rightarrow 0$

18.4 Trigonometric limits

1. $\lim _{x \rightarrow 0} \sin x=0$
2. $\lim _{x \rightarrow 0} \cos x=1$
3. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
4. $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
5. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
6. $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=0$
18.4.1 When $x \rightarrow a(a \neq 0)$

If $x=a+h$, as $x \rightarrow a, h \rightarrow 0$.

18.4.2 Factorization

Use them trig formulae

18.5 Exponential and logarithmic limits

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \\
& \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e^{x} \\
& \lim _{x \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \\
& \lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln a \\
& \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1 \\
& \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1 \\
& \lim _{x \rightarrow 1}\left(\frac{\log x}{x-1}\right)=1
\end{aligned}
$$

18.6 L'Hôpital's rule

If $\frac{f(a)}{g(a)}$ is of indeterminate form, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

19 Differentiation

The derivative of $f(x)$ is denoted by the following (equivalent) notations:

- $\frac{d y}{d x}$
- $\frac{d}{d x} y$
- $\frac{d}{d x} f(x)$
- $D y$
- y^{\prime}
- f^{\prime} or $f^{\prime}(x)$

It is defined as:

$$
\frac{d}{d x} f(x)=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta}
$$

Solving a derivative using the above equation is called "solving using first principle".

19.1 Rules

- Power rule

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

- Chain rule

$$
\frac{d}{d x}(f \circ g)=\frac{d}{d x}\left(\frac{d}{d g}(f)\right)=f^{\prime} \circ g \cdot g^{\prime}
$$

- Product rule

$$
\frac{d}{d x}(f \cdot g)=f^{\prime} g+f g^{\prime}
$$

- Quotient rule

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

19.2 Some Important Derivatives

$$
\begin{aligned}
& \frac{d}{d x}(k)=0 \\
& \frac{d}{d x}\left(a^{x}\right)=\frac{a^{x}}{\ln a} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a} \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
& \frac{d}{d x}(\sec x)=\sec x \tan x \\
& \frac{d}{d x}(\csc x)=-\csc x \cot x
\end{aligned}
$$

Part VI

Measures of Dispersion

20 Measures of Central Tendency

20.1 Basic

$$
\bar{x}=\frac{\sum x_{i}}{n}
$$

where n is the number of elements.

20.2 Direct method

$$
\bar{x}=\frac{\sum(f x)}{\sum f}
$$

where f is the frequency of the value x. This method is meant to be used for grouped data.
20.3 Short-cut method

$$
\bar{x}=A+\frac{\sum(f d)}{\sum f}
$$

where $d=x-A$
20.4 Step deviation method

$$
\bar{x}=A+\frac{\sum(f u)}{\sum f} \times i
$$

where $u=\frac{x-A}{i}$.

21 Measures of Dispersion

Mean deviation d is:

$$
d=\frac{\sum|x-\bar{x}|}{n}
$$

The standard deviation is:

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

The variance is:

$$
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

22 Probability

$$
\text { Odds in favour of } \mathrm{A}=\frac{n(A)}{1-n(A)}=\frac{P(A)}{1-P(A)}
$$

$$
\text { Odds against } \mathrm{A}=\frac{1-n(A)}{n(A)}=\frac{1-P(A)}{P(A)}
$$

Part VII

Conic Section

23 Parabola

24 Ellipse

25 Hyperbola

Part VIII

Introduction to 3-Dimensional Geometry

26 Points and their Coordinates in 3-Dimensions

27 Mathematical Reasoning

Part IX

Statistics

28 Statistics(Continued)

Combined mean is given as

$$
\bar{x}=\frac{n_{1} \overline{x_{1}}+n_{2} \overline{x_{2}}}{n_{1}+n_{2}}
$$

Combined standard deviation is given as

$$
\sigma=\sqrt{\frac{n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{2}^{2}+d_{2}^{2}\right)}{n_{1}+n_{2}}}
$$

where n_{1} and n_{2} are the number of observations in either distribution, σ_{1} and σ_{2} are the standard deviations, and d_{1} and d_{2} are the deviation of either mean from the respective combined mean $\left(d_{n}=\left|\bar{x}-\overline{x_{n}}\right|\right)$.

$$
M_{d}=Q_{2}=l+\frac{i}{f}\left(\frac{n}{2}-c\right)
$$

where l is the lower limit of the median class, i is the class size, f is the frequency of the median class, n is the number of observations in the distribution, and c is the cumulative frequency of the class preceding the median class.

Similarly,

$$
\begin{aligned}
Q_{1} & =l+\frac{i}{f}\left(\frac{n}{4}-c\right) \\
Q_{3} & =l+\frac{i}{f}\left(\frac{3 n}{4}-c\right) \\
D_{k} & =l+\frac{i}{f}\left(\frac{k n}{10}-c\right)
\end{aligned}
$$

$$
P_{k}=l+\frac{i}{f}\left(\frac{k n}{100}-c\right)
$$

The mode of a grouped distribution is given as

$$
l+\frac{f_{m}-f_{m-1}}{2 f_{m}-f_{m-1}-f_{m+1}}
$$

where l is the lower limit of the modal class, f_{m} is the frequency of the modal class, f_{m-1} is the frequency of the class preceding the modal class, and f_{m+1} is the frequency of the class following the modal class.

29 Correlation Analysis

29.1 Covariance

$\operatorname{cov}(x, y)=\frac{\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)+\ldots+\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)}{n}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}=\frac{\sum_{i=1}^{n} d_{x} d_{y}}{n}$

29.2 Karl Pearson's Coefficient of Correlation

$$
r=\frac{\sum d_{x} d_{y}}{\sqrt{\sum d_{x}^{2} \sum d_{y}^{2}}}
$$

where r is Karl Pearson's coefficient of correlation, $d_{x}=x_{i}-\bar{x}$, and $d_{y}=y_{i}-\bar{y}$.

$$
r=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sqrt{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \times \sqrt{\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}}}
$$

The above formula is used only when values of x and y are small.

$$
\frac{\sum u v-\frac{\sum u \sum v}{n}}{\sqrt{\sum u^{2}-\frac{\left(\sum u\right)^{2}}{n}} \times \sqrt{\sum v^{2}-\frac{\left(\sum v\right)^{2}}{n}}}
$$

where $u=x-A_{1}$ (deviation taken from assumed mean A_{1} of x series), $v=y-A_{2}$ (deviation taken from assumed mean A_{2} of y series). The above formula is used when \bar{x} and/or \bar{y} have decimal parts.

29.3 Spearman's Rank Correlation Coefficient

$$
R=1-\frac{6 \sum D^{2}}{n\left(n^{2}-1\right)}
$$

where D is the difference between the corresponding ranks of corresponding items of the two series and n is the number of individuals in each series.

When there are ties in a set of data, we use a correction factor.

$$
R=1-\frac{6\left[\sum D^{2}+\frac{1}{12} \sum\left(m_{i}^{3}-m\right)\right]}{n\left(n^{2}-1\right)}
$$

where m_{i} is the number of times a repeated value is repeated.

30 Index Numbers

30.1 Unweighted

$$
\begin{gathered}
P_{01}=\frac{\sum P_{1}}{\sum P_{0}} \times 100 \\
P_{01}=\frac{\sum x}{n}
\end{gathered}
$$

where $x=\sum_{\sum P_{1}} \times 100$.

30.2 Weighted

$$
\begin{gathered}
P_{01}=\frac{\sum W P_{1}}{\sum W P_{0}} \times 100 \\
P_{01}=\frac{\sum(W x)}{\sum W}
\end{gathered}
$$

where $x=\frac{P_{1}}{P_{0}} \times 100$

31 Moving Average

Part X

Non-ISC chapters

32 Logarithms

If $a^{b}=c, \log _{a} c=b . \log _{a} c$ is undefined when $a<0, a=1$ or $c<0$.

32.1 Laws

1. $\log _{x} x=1$
2. $\log _{x} 1=0$
3. $\log _{a} b=\frac{1}{\log _{b} a}$
4. $\log _{x} a+\log _{x} b=\log _{x} a b$
5. $\log _{x} a-\log _{x} b=\log _{x} \frac{a}{b}$
6. $-\log _{x} a=\log _{x} \frac{1}{a}$
7. $\log _{x} a^{b}=b \log _{x} a$
8. $\log _{x^{y}} a=\frac{1}{y} \log _{x} a$
9. $\log _{x^{y}} a^{b}=\frac{b}{y} \log _{x} a$
10. $\log _{b} a=\frac{\log _{x} a}{\log _{x} b}$ where x is any valid base
11. $a^{\log _{a} b}=b$
12. $a^{\log _{x} b}=b^{\log _{x} a}$
