12 Physics Cheat Sheet

Shreyas Minocha

Licensed under CC BY-SA 3.0.

Contents

Ι	Ele	ectrostatics 9		
1	Elee	ctric C	harges and Fields	9
	1.1	Force	on a charge due to another charge	9
		1.1.1	Force acting on charge q_1 due to charge $q_2 \ldots \ldots \ldots$	9
		1.1.2	Force acting on charge q_2 due to charge $q_1 \ldots \ldots \ldots$	9
	1.2	Electr	ic field intensity due to a point charge q	10
	1.3	Intens	ity of electric field due to a continuous charge distribution	10
		1.3.1	Linear charge distribution	10
		1.3.2	Surface charge distribution	10
		1.3.3	Volume charge distribution	11
	1.4	Electr	ic dipole moment	11
	1.5	Electr	ic field intensity due to a dipole	11
		1.5.1	At an axial point	11
		1.5.2	At an equatorial point	11
		1.5.3	1.5.1 vs 1.5.2	12
	1.6	Torqu	e on a dipole in a uniform electric field	12
9	Cat	1993, Th		19
4	Gat			12
	2.1	Solid a	angles	12
	2.2	Electr	ic flux	13
	2.3	Gauss	' Theorem	13
	2.4	Gauss	ian surfaces	13
	2.5	Applie	cations of Gauss' theorem	13

		2.5.1	Electric field due to a point charge	13
		2.5.2	Electric field due to an infinite line of charge	14
		2.5.3	Electric field due to an infinite plane of charge \ldots .	14
		2.5.4	Electric field due to two infinite parallel sheets of charge .	14
		2.5.5	Electric field just outside a charged conductor	15
		2.5.6	Electric field due to a uniformly charged thin shell $\ . \ . \ .$	15
3	Ele	ctric P	otential and Potential Energy	15
	3.1	Poten	tial due to a dipole	15
		3.1.1	At an axial point	15
		3.1.2	At an equatorial point	16
		3.1.3	At an arbitrary point	16
	3.2	Relati	on between E and V	16
	3.3 Equipotential surfaces			16
	3.4 Electric potential energy			16
	3.5	Work	done in rotating a dipole in an electric field	16
	3.6	Poten	tial energy of a dipole in an electrostatic field \ldots \ldots \ldots	16
4	Cap	pacitor	s and Dielectrics	17

4

II Current Electricity	17
5 Electric Resistance and Ohm's Law	17
6 DC Circuits and Measurements	17
III Magnetic Effects of Current and Magnetism	18
7 Moving charges and magnetism	18
8 Torque on a current loop: Moving Coil Galvanometer	18
9 Magnetic Classification of Substances	18
10 Electromagnetic Induction	18
IV EM Induction and Alternating Currents	19
IV EM Induction and Alternating Currents 11 Electromagnetic Induction	19 19
IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction	 19 19 19
IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction	 19 19 19 20
IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction	 19 19 20 20
 IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction 11.2 Mutual Induction 12 Alternating Current 12.1 Types of AC circuits 	 19 19 20 20 20
 IV EM Induction and Alternating Currents 11 Electromagnetic Induction Self Induction Self Induction Mutual Induction 12 Alternating Current Types of AC circuits Curcuit containing resistance (R) only 	 19 19 20 20 20 20 20
 IV EM Induction and Alternating Currents 11 Electromagnetic Induction Self Induction Nutual Induction 12 Alternating Current Types of AC circuits Types of AC circuits Turcuit containing resistance (R) only Turcuit containing inductance (L) only 	 19 19 20 20 20 20 20 21
IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction 11.2 Mutual Induction 11.2 Mutual Induction 12 Alternating Current 12.1 Types of AC circuits 12.1.1 Circuit containing resistance (R) only 12.1.2 Circuit containing inductance (L) only 12.1.3 Circuit containing capacitance (C) only	 19 19 20 20 20 20 20 21 21
IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction 11.2 Mutual Induction 11.2 Mutual Induction 12 Alternating Current 12.1 Types of AC circuits 12.1.1 Circuit containing resistance (R) only 12.1.2 Circuit containing inductance (L) only 12.1.3 Circuit containing capacitance (C) only 12.1.4 Circuit containing L, R	 19 19 20 20 20 20 21 21
IV EM Induction and Alternating Currents 11 Electromagnetic Induction 11.1 Self Induction 11.2 Mutual Induction 11.2 Mutual Induction 12 Alternating Current 12.1 Types of AC circuits 12.1.1 Circuit containing resistance (R) only 12.1.2 Circuit containing inductance (L) only 12.1.3 Circuit containing capacitance (C) only 12.1.4 Circuit containing L, R 12.1.5 Circuit containing C, R	 19 19 20 20 20 20 21 21 21 22

	12.1.7 Circuit containing L, C, R	22
	12.2 Power	23
	12.3 Half Points	23
V	Electromagnetic Waves	24
13	Electromagnetic Waves	24
VI	Optics	25
14	Spherical Mirrors	25
15	Refraction of Light at a Plane Interface: (Total Internal Re- flectiom — Optical Fibre)	25
16	Refraction of Light at Spherical Surfaces: Lenses	25
17	Refraction and Dispersion of Light Through a Prism	25
18	Optical Instruments	25
	18.1 Simple Microscope	25
	18.2 Compound Microscope	25
	18.3 Refracting (Astronomical) Telescope	26
	18.4 Reflecting Telescope	26
19	Wave Nature of Light: Huygens' Principle	26
20	Interference of Light	26
21	Diffraction of Light	26

VII Dual Nature of Radiation and Matter	27
23 Photoelectric Effect	27
24 Matter Waves	27
25 X Rays	28
VIII Atoms and Nuclei	29
26 Atoms: Origin of Spectra	29
27 Nuclear Structure	29
28 Radioactivity	29
29 Mass energy equivalence: Nuclear energy binding	29
30 Nuclear Fission and Nuclear Fusion: Source of energy	29
IX Electronic Devices	30
31 Semiconductor Electronics	30
32 Junction Diodes	30
33 Junction Transistors	30
34 Logic Gates	30

X Communication Systems	31
35 Communication Systems	31
A Constants	32

Part I

Electrostatics

1 Electric Charges and Fields

 $electric \ current = \frac{charge}{time}$

$$\epsilon = K\epsilon_0$$

For a vacuum, K = 1. That is, $\epsilon = \epsilon_0$.

$$F = k \frac{q_1 q_2}{r^2} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2} = \frac{1}{4\pi K\epsilon_0} \frac{q_1 q_2}{r^2}$$

1.1 Force on a charge due to another charge

1.1.1 Force acting on charge q_1 due to charge q_2

$$\overrightarrow{F_{12}} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{\overrightarrow{r_{12}}^2} \hat{r_{12}} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^3} \overrightarrow{r_{12}}$$

where $\overrightarrow{r_{12}}$ is the position of q_2 with respect to q_1 and r is $|\overrightarrow{r_{12}}|$.

1.1.2 Force acting on charge q_2 due to charge q_1

$$\overrightarrow{F_{21}} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{\overrightarrow{r_{21}}^2} \hat{r_{12}} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^3} \overrightarrow{r_{21}} = -\overrightarrow{F_{12}}$$

where $\overrightarrow{r_{21}}$ is the position of q_1 with respect to q_2 and r is $|\overrightarrow{r_{21}}|$.

$$F_1 = \sum_{i=2}^n F_{1i}$$

$$\overrightarrow{E} = \frac{\overrightarrow{F}}{q}$$

$$\implies \overrightarrow{F} = q \overrightarrow{E}$$
$$\overrightarrow{E} = \sum \overrightarrow{E_i}$$

1.2 Electric field intensity due to a point charge q

$$E = \frac{1}{4\pi\epsilon} \frac{q}{r^2}$$

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon} \frac{q}{\overrightarrow{r}^2} \hat{r}$$

where \overrightarrow{r} is the position of the test charge with respect to q.

1.3 Intensity of electric field due to a continuous charge distribution

1.3.1 Linear charge distribution

$$\overrightarrow{F} = \frac{q_0}{4\pi\epsilon} \int_L \frac{\lambda l}{\overrightarrow{r_{21}}^2} \hat{r_{21}}$$

where 2 is the position of the test charge and 1 is the position of dL.

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon} \int_{L} \frac{\lambda dl}{\overrightarrow{r_{21}}^2} \hat{r_{21}}$$

1.3.2 Surface charge distribution

$$\overrightarrow{F} = \frac{q_0}{4\pi\epsilon} \int_S \frac{\sigma dA}{\overrightarrow{r_{21}}^2} \hat{r_{21}}$$

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon} \int_{S} \frac{\sigma dA}{\overrightarrow{r_{21}}^2} \hat{r_{21}}$$

1.3.3 Volume charge distribution

$$\overrightarrow{F} = \frac{q_0}{4\pi\epsilon} \int_V \frac{\rho dV}{\overrightarrow{r_{21}}^2} \hat{r_{21}}$$

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon} \int_{V} \frac{\rho dV}{\overrightarrow{r_{21}}^2} \hat{r_{21}}$$

1.4 Electric dipole moment

$$\overrightarrow{p} = q \times 2 \overrightarrow{l}$$

 \overrightarrow{p} always points from the negative charge to the positive charge.

1.5 Electric field intensity due to a dipole

1.5.1 At an axial point

$$E_{1} = \frac{1}{4\pi\epsilon} \frac{q_{1}}{(r-l)^{2}}$$
$$E_{2} = \frac{1}{4\pi\epsilon} \frac{q_{2}}{(r+l)^{2}}$$
$$E = E_{1} - E_{2}$$
$$E = \frac{1}{4\pi\epsilon} \frac{2pr}{(r^{2} - l^{2})^{2}} = \frac{1}{4\pi\epsilon} \frac{2p}{r^{3}}$$

 $\text{ if } r \gg l.$

1.5.2 At an equatorial point

$$E_1 = E_2 = \frac{1}{4\pi\epsilon} \frac{q}{r^2 + l^2}$$

$$E = E_1 \cos \theta + E_2 \cos \theta = 2 \left[\frac{1}{4\pi\epsilon} \frac{q}{r^2 + l^2} \right] \cos \theta$$

$$\cos\theta = \frac{A}{H} = \frac{l}{\sqrt{r^2 + l^2}} = \frac{l}{(r^2 + l^2)^{\frac{1}{2}}}$$
$$E = 2\left[\frac{1}{4\pi\epsilon}\frac{q}{r^2 + l^2}\right]\left[\frac{l}{(r^2 + l^2)^{\frac{1}{2}}}\right] = \frac{1}{4\pi\epsilon}\frac{2ql}{(r^2 + l^2)^{\frac{3}{2}}} = \frac{1}{4\pi\epsilon}\frac{p}{(r^2 + l^2)^{\frac{3}{2}}}$$

If $r \gg l$,

$$E = \frac{1}{4\pi\epsilon} \frac{p}{r^3}$$
$$\vec{E} = -\frac{1}{4\pi\epsilon} \frac{\vec{p}}{r^3}$$

1.5.3 1.5.1 vs 1.5.2

$$\overrightarrow{E_{\text{axial}}} = -2\overrightarrow{E_{\text{equatorial}}}$$

1.6 Torque on a dipole in a uniform electric field

$$\tau = qE \times 2l\sin\theta = 2ql \times E\sin\theta = pE\sin\theta$$

$$\overrightarrow{\tau} = \overrightarrow{p} \times \overrightarrow{E}$$

2 Gauss' Theorem

2.1 Solid angles

$$d\omega = \frac{dA}{r^2}$$

1 steridian is the solid angle subtendedd by a part of the surface of a sphere at the centre of the sphere when the $dA = r^2$.

$$\omega = \frac{4\pi r^2}{r^2} = 4\pi \,\text{steridian}$$

$$d\omega = \frac{dA\cos\theta}{r^2}$$

2.2 Electric flux

$$\Phi_E = \oint \overrightarrow{E} \cdot d\overrightarrow{A}$$

For a plane surface of area A in a uniform electric field:

$$\Phi_E = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = \oint E dA \cos \theta = E \cos \theta \oint dA = EA \cos \theta$$

2.3 Gauss' Theorem

$$\Phi_E = \oint \overrightarrow{E} \cdot \overrightarrow{dA} = \frac{q}{\epsilon_0}$$

2.4 Gaussian surfaces

A gaussian surface is an arbitrary closed surface in space through which the flux of a vector field is calculated.

- The surface must be a closed surface
- The surface must pass through the point at which the flux is to be calculated
- The surface must be shaped according to the symmetry of the source so that the field is normal to the surface at each point and constant in magnitude.
- The surface should not pass through any discrete charge.

2.5 Applications of Gauss' theorem

2.5.1 Electric field due to a point charge

Gaussian surface: sphere.

$$E = \frac{1}{4\pi\epsilon} \frac{q}{r^2}$$

2.5.2 Electric field due to an infinite line of charge

Gaussian surface: cylinder around and parallel to the line of charge.

$$\overrightarrow{E} = \frac{\lambda}{2\pi\epsilon_0}\hat{r}$$

2.5.3 Electric field due to an infinite plane of charge

Gaussian surface: surface with its length through the "centre" of the plane.

$$E = \frac{\sigma}{2\epsilon_0}$$

2.5.4 Electric field due to two infinite parallel sheets of charge

Use results from 2.5.3.

$$E_{1} = \frac{\sigma_{1}}{2\epsilon_{0}}$$
$$E_{2} = \frac{\sigma_{2}}{2\epsilon_{0}}$$
$$E_{\pm\pm_{\text{side}}} = \frac{\sigma}{\epsilon_{0}}$$
$$E_{\pm\pm_{\text{mid}}} = 0$$
$$E_{\pm\mp_{\text{side}}} = 0$$
$$E_{\pm\mp_{\text{mid}}} = \frac{\sigma}{\epsilon_{0}}$$

2.5.5 Electric field just outside a charged conductor

Practically identical to 2.5.3.

2.5.6 Electric field due to a uniformly charged thin shell

Gaussian surface:

3 Electric Potential and Potential Energy

$$V = \frac{W}{q_0}$$
$$V_A - V_B = \frac{W}{q_0}$$
$$V = \frac{1}{4\pi\epsilon} \frac{q}{r}$$
$$V = \frac{1}{4\pi\epsilon} \sum \frac{q_i}{r_i}$$
$$V = \frac{1}{4\pi\epsilon} \int \frac{\sigma dl}{r}$$
$$V = \frac{1}{4\pi\epsilon} \int_S \frac{\sigma dA}{r}$$
$$V = \frac{1}{4\pi\epsilon} \int_v \frac{\rho dv}{r}$$

3.1 Potential due to a dipole

3.1.1 At an axial point

$$V = \frac{1}{4\pi\epsilon} \frac{p}{r^2 - l^2}$$

If
$$r \gg l,$$

$$V = \frac{1}{4\pi\epsilon} \frac{p}{r^2} \label{eq:V}$$

3.1.2 At an equatorial point

$$V_{!} = \frac{1}{4\pi\epsilon} \frac{q}{BP}$$
$$V_{2} = \frac{1}{4\pi\epsilon} \frac{q}{AP}$$

$$V = V_1 + V_2 = 0$$

3.1.3 At an arbitrary point

$$V = \frac{1}{4\pi\epsilon} \frac{p\cos\theta}{r^2}$$

3.2 Relation between E and V

$$E = -\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{V_1 - V_2}{d}$$

- 3.3 Equipotential surfaces
- 3.4 Electric potential energy
- 3.5 Work done in rotating a dipole in an electric field
- 3.6 Potential energy of a dipole in an electrostatic field
- 4 Capacitors and Dielectrics

Part II

Current Electricity

- 5 Electric Resistance and Ohm's Law
- 6 DC Circuits and Measurements

$$E = \frac{\mathrm{d}W}{\mathrm{d}q}$$

$$E = V_1 + V_2 + V_3 + \dots$$

$$V = E - Ir$$

$$r = R\left(\frac{E}{V} - 1\right)$$

Part III

Magnetic Effects of Current and Magnetism

- 7 Moving charges and magnetism
- 8 Torque on a current loop: Moving Coil Galvanometer
- 9 Magnetic Classification of Substances
- 10 Electromagnetic Induction

Part IV

EM Induction and Alternating Currents

11 Electromagnetic Induction

$$\Phi_B = BA\cos\theta$$

$$\Phi_B = \frac{FA}{Il}$$

$$e_{N=1} = -\frac{\Delta \Phi_B}{\Delta t} = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$

$$e = -N\frac{\Delta\Phi_B}{\Delta t} - N\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$

$$I = \frac{e}{r} = \frac{N}{R} \frac{\Delta \Phi_B}{\Delta t}$$

$$q = I\Delta t = \frac{N}{R}\Delta\Phi_B$$

$$V = Bvl$$

11.1 Self Induction

$$L = \frac{N\Phi_B}{I}$$

$$e = -\frac{\Delta(LI)}{\Delta t} = -L\frac{\Delta I}{\Delta t}$$

$$L = -\frac{e\Delta t}{\Delta I} = -\frac{e}{\Delta I/\Delta t}$$

11.2 Mutual Induction

$$M = \frac{N_2 \Phi_2}{I_1}$$

12 Alternating Current

$$V_0 = NBA\omega$$

$$V = V_0 \sin \omega t$$

$$I = I_0 \sin wt$$

$$T = \frac{2\pi}{\omega}$$
$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$
$$I_m = \frac{2}{\pi}I_0$$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

12.1 Types of AC circuits

12.1.1 Circuit containing resistance (R) only

$$V = V_0 \sin \omega t$$

$$I = I_0 \sin \omega t$$

12.1.2 Circuit containing inductance (L) only

$$V = V_0 \sin \omega t$$
$$I = I_0 \sin \left(\omega t - \frac{\pi}{2}\right)$$
$$X_L = \omega L = 2\pi f L$$
$$I_0 = \frac{V_0}{X_L} = \frac{V_0}{\omega L}$$

12.1.3 Circuit containing capacitance (C) only

$$V = V_0 \sin \omega t$$

$$I = I_0 \sin\left(\omega t + \frac{\pi}{2}\right)$$
$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$
$$I_0 = \frac{V_0}{X_C} = \frac{V_0}{\frac{1}{\omega C}}$$

12.1.4 Circuit containing L, R

$$I = I_0 \sin(\omega t - \Phi)$$

$$Z = \sqrt{R^2 + X_L^2}$$

$$I_0 = \frac{V_0}{Z}$$
$$V = \sqrt{V_R^2 + V_L^2}$$
$$\Phi = \tan^{-1}\left(\frac{X_L}{R}\right)$$
$$\cos \Phi = \frac{R}{\sqrt{R^2 + X_L^2}}$$

12.1.5 Circuit containing C, R

$$I = I_0 \sin(\omega t + \Phi)$$
$$Z = \sqrt{R^2 + X_C^2}$$
$$I_0 = \frac{V_0}{Z}$$
$$V = \sqrt{V_R^2 + V_C^2}$$
$$\Phi = \tan^{-1}\left(\frac{X_C}{R}\right)$$
$$\cos \Phi = \frac{R}{\sqrt{R^2 + X_C^2}}$$

12.1.6 Circuit containing L, C

12.1.7 Circuit containing L, C, R

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$\Phi = \tan^{-1}\left(\frac{X_L - X_C}{R}\right)$$

Resonance

$$I_{\rm rms} = \frac{V_{\rm rms}}{Z}$$

$$X_L = X_C$$
$$L\omega = \frac{1}{\omega C}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

12.2 Power

 $P = \text{Apparent power} \times \text{Power factor} = V_{\text{rms}} I_{\text{rms}} \cos \Phi = I_{\text{rms}}^2 R = \frac{1}{2} V_0 I_0 \cos \Phi$

12.3 Half Points

Part V

Electromagnetic Waves

13 Electromagnetic Waves

$$I_D = \epsilon_0 \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

$$\oint B \mathrm{d}t = \mu_0 (I_C + I_D)$$

$$\frac{E^2\epsilon_0}{2}$$

$$\frac{B^2}{2\mu_0}$$

$$\frac{E^2\epsilon_0}{2} + \frac{B^2}{2\mu_0}$$

$$p = \frac{U}{c}$$

	Wavelength (m)
Gamma	1×10^{-14} to 1×10^{-10}
X Rays	1×10^{-12} to $3 \times 10^{+8}$
Ultraviolet	6×10^{-10} to 4×10^{-7}
Visible	4×10^{-7} to 7×10^{-7}
Infrared	8×10^{-7} to 5×10^{-3}
Micro	1×10^{-3} to 3×10^{-1}
Radio	1×10^{-1} to $1 \times 10^{+4}$
Long	$5 \times 10^{+6}$ to $6 \times 10^{+6}$

Part VI

Optics

- 14 Spherical Mirrors
- 15 Refraction of Light at a Plane Interface: (Total Internal Reflectiom — Optical Fibre)
- 16 Refraction of Light at Spherical Surfaces: Lenses
- 17 Refraction and Dispersion of Light Through a Prism

18 Optical Instruments

18.1 Simple Microscope

$$M = \frac{D}{u}$$

$$M = 1 + \frac{D}{f}$$

Relaxed eye:

$$M = \frac{D}{f}$$

18.2 Compound Microscope

$$M = m_e \times m_o$$

$$M = -\frac{v_o}{u_o} \left(\frac{D}{u_e}\right)$$
$$M = \frac{f_o}{u_o - f_o} \left(\frac{D}{u_e}\right)$$

Adjustment for clear vision:

$$M = -\frac{v_o}{u_o} \left(1 + \frac{D}{f_e} \right)$$

 $L = v_o + |u_e|$

18.3 Refracting (Astronomical) Telescope

18.4 Reflecting Telescope

$$M = -\frac{f_o}{f_e}$$

$$l = 1.22 \frac{\lambda}{d}$$
 radian

- 19 Wave Nature of Light: Huygens' Principle
- 20 Interference of Light
- 21 Diffraction of Light
- 22 Polarization of Light

Part VII

Dual Nature of Radiation and Matter

23 Photoelectric Effect

$$hv = W + E_k$$

$$E_k = hv - W$$

 $W = hv_0$

$$E_k = hv - hv_0 = h(v - v_0)$$

$$\frac{1}{2}mv_{\max}^2 = h(v - v_0) = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)$$

$$\frac{1}{2}mv_{\max}^2 = eV_0$$

$$eV_0 = h(v - v_0)$$

$$V_0 = \frac{h}{e}(v - v_0)$$

24 Matter Waves

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

$$\lambda = \frac{h}{\sqrt{2mK}}$$

$$\lambda_{\text{electron}} = \sqrt{\frac{150}{V}} \times 10^{-10} \,\mathrm{m}$$

25 X Rays

$$v_{\max} = \frac{eV}{h}$$

$$\lambda_{\min} = \frac{hc}{eV}$$

$$\sqrt{v} = a(Z - b)$$

Part VIII

Atoms and Nuclei

- 26 Atoms: Origin of Spectra
- 27 Nuclear Structure
- 28 Radioactivity
- 29 Mass energy equivalence: Nuclear energy binding
- 30 Nuclear Fission and Nuclear Fusion: Source of energy

Part IX

Electronic Devices

31 Semiconductor Electronics

32 Junction Diodes

$$V_{\rm in} = IR + V_z$$

$$I = I_Z + I_L$$

$$R = \frac{V_{in} - V_Z}{I_Z + I_L}$$

- 33 Junction Transistors
- 34 Logic Gates

Part X

Communication Systems

35 Communication Systems

A Constants

$$k_{\rm vacuum} = 9.0 \times 10^9 \, {\rm Nm}^2 {\rm C}^{-2}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^2$$

 $\mu_0 =$

$$h=6.63\times 10^{-34}\,\mathrm{Js}$$

 $c=3\times 10^8\,{\rm ms}^{-1}$

e =

 $m_e =$